79 research outputs found

    OR Residual Connection Achieving Comparable Accuracy to ADD Residual Connection in Deep Residual Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have garnered substantial attention in brain-like computing for their biological fidelity and the capacity to execute energy-efficient spike-driven operations. As the demand for heightened performance in SNNs surges, the trend towards training deeper networks becomes imperative, while residual learning stands as a pivotal method for training deep neural networks. In our investigation, we identified that the SEW-ResNet, a prominent representative of deep residual spiking neural networks, incorporates non-event-driven operations. To rectify this, we introduce the OR Residual connection (ORRC) to the architecture. Additionally, we propose the Synergistic Attention (SynA) module, an amalgamation of the Inhibitory Attention (IA) module and the Multi-dimensional Attention (MA) module, to offset energy loss stemming from high quantization. When integrating SynA into the network, we observed the phenomenon of "natural pruning", where after training, some or all of the shortcuts in the network naturally drop out without affecting the model's classification accuracy. This significantly reduces computational overhead and makes it more suitable for deployment on edge devices. Experimental results on various public datasets confirmed that the SynA enhanced OR-Spiking ResNet achieved single-sample classification with as little as 0.8 spikes per neuron. Moreover, when compared to other spike residual models, it exhibited higher accuracy and lower power consumption. Codes are available at https://github.com/Ym-Shan/ORRC-SynA-natural-pruning.Comment: 16 pages, 8 figures and 11table

    The safety of colorectal cancer surgery during the COVID-19: a systematic review and meta-analysis

    Get PDF
    BackgroundThe ongoing coronavirus disease 2019 (COVID-19) pandemic has placed unprecedented pressure on the healthcare systems. This study evaluated the safety of colorectal cancer (CRC) surgery during the COVID-19 pandemic.MethodsA systematic review and meta-analysis were performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (PROSPERO ID: CRD 42022327968). Relevant articles were systematically searched in the PubMed, Embase, Web of Science, and Cochrane databases. The postoperative complications, anastomotic leakage, postoperative mortality, 30-day readmission, tumor stage, total hospitalization, postoperative hospitalization, preoperative waiting, operation time, and hospitalization in the intensive care unit (ICU) were compared between the pre-pandemic and during the COVID-19 pandemic periods.ResultsAmong the identified 561 articles, 12 met the inclusion criteria. The data indicated that preoperative waiting time related to CRC surgery was higher during the COVID-19 pandemic (MD, 0.99; 95%CI, 0.71–1.28; p < 0.00001). A similar trend was observed for the total operative time (MD, 25.07; 95%CI, 11.14–39.00; p =0.0004), and on T4 tumor stage during the pandemic (OR, 1.77; 95%CI, 1.22–2.59; p=0.003). However, there was no difference in the postoperative complications, postoperative 90-day mortality, anastomotic leakage, and 30-day readmission times between pre-COVID-19 pandemic and during the COVID-19 pandemic periods. Furthermore, there was no difference in the total hospitalization time, postoperative hospitalization time, and hospitalization time in ICU related to CRC surgery before and during the COVID-19 pandemic.ConclusionThe COVID-19 pandemic did not affect the safety of CRC surgery. The operation of CRC during the COVID-19 pandemic did not increase postoperative complications, postoperative 90-day mortality, anastomotic leakage, 30-day readmission, the total hospitalization time, postoperative hospitalization time, and postoperative ICU hospitalization time. However, the operation of CRC during COVID-19 pandemic increased T4 of tumor stage during the COVID-19 pandemic. Additionally, the preoperative waiting and operation times were longer during the COVID-19 pandemic. This provides a reference for making CRC surgical strategy in the future.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42022327968

    BMP-12 Treatment of Adult Mesenchymal Stem Cells In Vitro Augments Tendon-Like Tissue Formation and Defect Repair In Vivo

    Get PDF
    We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression of the tenocyte lineage markers scleraxis (Scx) and tenomodulin (Tnmd) over 14 days. Treatment with BMP-12 for a further 12-hour period had no additional effect. Colony formation assays revealed that ∼80% of treated cells and their progeny were Scx- and Tnmd-positive. BM-MSCs seeded in collagen scaffolds and similarly treated with a single dose of BMP-12 also expressed high levels of Scx and Tnmd, as well as type I collagen and tenascin-c. Furthermore, when the treated BM-MSC-seeded scaffolds were implanted into surgically created tendon defects in vivo, robust formation of tendon-like tissue was observed after 21 days as evidenced by increased cell number, elongation and alignment along the tensile axis, greater matrix deposition and the elevated expression of tendon markers. These results indicate that brief stimulation with BMP-12 in vitro is sufficient to induce BM-MSC differentiation into tenocytes, and that this phenotype is sustained in vivo. This strategy of pretreating BM-MSCs with BMP-12 prior to in vivo transplantation may be useful in MSC-based tendon reconstruction or tissue engineering

    Genome-Wide Mapping of DNA Methylation in Chicken

    Get PDF
    Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS) and the transcription termination site (TTS). Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds

    Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation

    Get PDF
    The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiae origin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general

    Identification and expression of equine MER-derived miRNAs

    Get PDF
    MicroRNAs (miRNAs) are single-stranded, small RNAs (21-23 nucleotides) that function in gene silencing and translational inhibition via the RNA interference mechanism. Most miRNAs originate from host genomic regions, such as intergenic regions, introns, exons, and transposable elements (TEs). Here, we focused on the palindromic structure of medium reiteration frequencies (MERs), which are similar to precursor miRNAs. Five MER consensus sequences (MER5A1, MER53, MER81, MER91C, and MER117) were matched with paralogous transcripts predicted to be precursor miRNAs in the horse genome (equCab2) and located in either intergenic regions or introns. The MER5A1, MER53, and MER91C sequences obtained from RepeatMasker were matched with the eca-miR-544b, eca-miR-1302, and eca-miR-652 precursor sequences derived from Ensembl transcript database, respectively. Each precursor form was anticipated to yield two mature forms, and we confirmed miRNA expression in six different tissues (cerebrum, cerebellum, lung, spleen, adrenal gland, and duodenum) of one thoroughbred horse. MER5A1-derived miRNAs generally showed significantly higher expression in the lung than in other tissues. MER91C-derived miRNA-5p also showed significantly higher expression in the duodenum than in other tissues (cerebellum, lung, spleen, and adrenal gland). The MER117-overlapped expressed sequence tag generated polycistronic miRNAs, which showed higher expression in the duodenum than other tissues. These data indicate that horse MER transposons encode miRNAs that are expressed in several tissues and are thought to have biological functions

    Glucocorticoid Receptor and Sequential P53 Activation by Dexamethasone Mediates Apoptosis and Cell Cycle Arrest of Osteoblastic MC3T3-E1 Cells

    Get PDF
    Glucocorticoids play a pivotal role in the proliferation of osteoblasts, but the underlying mechanism has not been successfully elucidated. In this report, we have investigated the molecular mechanism which elucidates the inhibitory effects of dexamethasone on murine osteoblastic MC3T3-E1 cells. It was found that the inhibitory effects were largely attributed to apoptosis and G1 phase arrest. Both the cell cycle arrest and apoptosis were dependent on glucocorticoid receptor (GR), as they were abolished by GR blocker RU486 pre-treatment and GR interference. G1 phase arrest and apoptosis were accompanied with a p53-dependent up-regulation of p21 and pro-apoptotic genes NOXA and PUMA. We also proved that dexamethasone can’t induce apoptosis and cell cycle arrest when p53 was inhibited by p53 RNA interference. These data demonstrate that proliferation of MC3T3-E1 cell was significantly and directly inhibited by dexamethasone treatment via aberrant GR activation and subsequently P53 activation

    Global Analysis of DNA Methylation by Methyl-Capture Sequencing Reveals Epigenetic Control of Cisplatin Resistance in Ovarian Cancer Cell

    Get PDF
    Cisplatin resistance is one of the major reasons leading to the high death rate of ovarian cancer. Methyl-Capture sequencing (MethylCap-seq), which combines precipitation of methylated DNA by recombinant methyl-CpG binding domain of MBD2 protein with NGS, global and unbiased analysis of global DNA methylation patterns. We applied MethylCap-seq to analyze genome-wide DNA methylation profile of cisplatin sensitive ovarian cancer cell line A2780 and its isogenic derivative resistant line A2780CP. We obtained 21,763,035 raw reads for the drug resistant cell line A2780CP and 18,821,061reads for the sensitive cell line A2780. We identified 1224 hyper-methylated and 1216 hypomethylated DMRs (differentially methylated region) in A2780CP compared to A2780. Our MethylCap-seq data on this ovarian cancer cisplatin resistant model provided a good resource for the research community. We also found that A2780CP, compared to A2780, has lower observed to expected methylated CpG ratios, suggesting a lower global CpG methylation in A2780CP cells. Methylation specific PCR and bisulfite sequencing confirmed hypermethylation of PTK6, PRKCE and BCL2L1 in A2780 compared with A2780CP. Furthermore, treatment with the demethylation reagent 5-aza-dC in A2780 cells demethylated the promoters and restored the expression of PTK6, PRKCE and BCL2L1

    Quantification of miRNA-mRNA Interactions

    Get PDF
    miRNAs are small RNA molecules (′ 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO)
    corecore